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ABSTRACT 

I n  th i s  study the exact  expression f o r  the input impedance of a small 

loop of uniform e l ec t r i c  c u r r e n t  is derived fo r  the c a s e  when the loop 

is i m m e r s e d  in a n  infinite, homogeneous, cold, anisotropic p lasma.  

Due to  the nature  of the exact  express ions ,  the loop impedance is 

calculated by two methods of approximation fo r  the c a s e  where  the 

imposed s teady magnetic field is normal  to  the plane of the loop. 

f i r s t  method uses  the quasi-s ta t ic  approximation, f o r  which a first  

o r d e r  co r rec t ion  t e r m  is. a l s o  calculated.  The second approximate 

method involves the assumpt ion  that the medium is uniaxial. 

The 

T h e  loop impedance is a l s o  calculated under the uniaxial appro-  

ximation f o r  the c a s e  where  the imposed s teady  magnetic f ie ld  is 

pa ra l l e l  to  the loop. 

A discussion of the experimental  techniques in measur ing  the loop 

impedance is given. 

i n  the exper imenta l  p rog ram.  

A brush-cathode d ischarge  chamber  was  used 

The  theoret ical ly  der ived impedance formulae  a r e  numerical ly  

evaluated fo r  a wide range  of the plasma p a r a m e t e r s  and the measu red  

loop impedance is compared  to  the theory.  

ag reemen t  between the theore t ica l  and  m e a s u r e d  loop impedance.  

T h e r e  is good genera l  
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CHAPTER 1 INTRODUCTION 

A considerable amount of attention has  been d i rec ted  recent ly  to the study 

Extensive s tudies  have been c a r r i e d  out of the anisotropic magneto-plasma.  

regarding the electromagnetic propert ies  of e l ec t r i c  dipoles in  such media, 

(Balmain,  1963, Mi t t ra  and Duff, 1965). 

Some init ial  studies of the electromagnetic proper t ies  of an  infinitesimal 

loop of e lec t r ic  cu r ren t  have been made, (Wu, 1963, Duff, 1965). The rad ia-  

tion r e s i s t ance  of a n  inf ini tes imal  magnetic dipole has  been calculated by 

%€ gi.1; :. ,W 61 s hC~~l,96 5 ) . 

I t  would be m o s t  useful to  obtain express ions  for  the input impedance of a 

loop i m m e r s e d  i n  an  anisotropic plasma. 

solving Maxwell 's  equations for  a cur ren t  distribution, the loop in  this study 

was a s s u m e d  to be sma l l  and an uniform cu r ren t  dis t r ibut ion has  been a s sumed .  

The p l a s m a  i s  a l so  a s sumed  to  be cold to avoid the complexities of dealing with 

Because of the complex nature  of 

the acoust ic  phenomena of a w a r m  plasma. 

In Chapter  2 the medium i s  descr ibed and the genera l  impedance formula 

f o r  the s teady magnet ic  field no rma l  to the loop i s  der ived 'by  means  of the in-  

duced e. m. f. method. The loop of cur ren t  i s  descr ibed  and the Four i e r  t r a n s -  

f o r m e d  Maxwell ' s  equations a r e  solved. The impedance of the loop i s  then 

given in  t e r m s  of the t r ans fo rmed  magnetic field. 

In Chapter  3 the quasi-s ta t ic  approximation i s  introduced t o  facil i tate the 

solution of the loop impedance. Chapter 4 gives a f i r s t  o rde r  cor rec t ion  t e r m  
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c 

c 

to the quasi-s ta t ic  resul t .  

Chapter 5 introduces the use of the uniaxial approximation and the loop im- 

pedance i s  derived under these  conditions. 

0 
In Chapter 6 the steady magnet ic  field i s  turned 90 s o  that  it i s  para l le l  to 

the loop and the impedance i s  again calculated using the uniaxial approximation. 

Chapter 7 deals  with construction and operat ion of the b r u s h  cathode p las -  

m a  chamber  and all the associated equipment used in  the experimental  de t e r -  

mination of the loop impedance. 

Chapter  8 gives a descr ipt ion of the numer i ca l  techniques used to evaluate 

the theoret ical  formulae  der ived in the e a r l i e r  chapters .  

Chapter 9 gives a discussion of the theoret ical  r e su l t s  and the kind of r e -  

sul ts  that  should be expected in the experimental  measu remen t s .  

In Chapter 10  the computed numer ica l  r e su l t s  for  a wide range of e lec t ron  

densi ty  and imposed s teady magnet ic  field a r e  presented and discussed.  

Chapter 11 presents  the loop impedance m e a s u r e d  under a var ie ty  of p las -  

m a  conditions, along with a discussion of the resu l t s .  

r e su l t s  a r e  presented on Smith Char t s  for the sake of c la i r ty .  

Finally Chapter 1 2  presents  the conclusions of the study. 

A l l  of these  numer i ca l  
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CHAPTER 2 DERIVATION O F  THE EXACT THEORY; 
- 
B NORMAL TO THE LOOP 

0 

2. 1 The Magneto-Ionic Medium 

The medium that will  be considered in th i s  study is  known as an  anisotro-  

pic plasma.  Cer ta in  assumptions regarding the medium have been made. It is 

considered to  be e l ec t r i ca l ly  neutral ,  that  i s  the e lec t ron  densi ty  is  equal t o  the 
- 

is  assumed to  

The 

BO’ 
ion density. In addition, a s teady D. C. magnetic field, 

ex i s t  in  the positive $-direction of the Car t e s i an  co-ordinate sys tem.  

ions,  being S O  much heavier  than the electrons,  a r e  considered t o  be station- 

a r y  and the electrons move with velocity V due t o  the forces  exer ted  by the 
- - 

D. C. magnet ic  field, B , and the r. f. e l ec t r i c  field, E. The force  due t o  the 
0 

r.f. magnet ic  field is  re la t ively small and is  neglected. If one a s s u m e s  the 

medium to  be homogeneous and infinite i n  extent and solves  the f o r c e  equation 

fo r  the electrons,  including frictional f o r c e s  due to  e lec t ron  coll isions with 

gas  molecules  and ions,  one obtains the following familiar constitutive r e l a -  

tions f o r  the medium. 
- - -- - 

D = Z K E  and B =  
0 

- 
The r e l a t ive  permit t ivi ty  tensor  K i s  

PE 

K =  [: -jKl 
JKl  1 

K1 
0 

0 
K :I 

(2.1.1) 

(2. 1. 2)  



where  

and 

xu  
2 2  u - Y  

K = I -  
1 

X 
0 U 

K = 1 - -  

- X Y  
2 2  u - Y  

K1l  - 

2 
N 
2 N m&o 

2 
2 Ne 

0 = -  
w 

x = -  
w 

eBo 
0 = -  

H m  
H 

0 

y = -, 
w 

t/ U = 1 - j Z ,  Z = -  
w 

The following is a l i s t  of symbols  used throughout. 

w = r e f .  radian frequency. 

= magnetic permeabi l i ty  of f r e e  space. 
/ P o  

& = dielectr ic  constant of f r e e  space.  

ko = ad-= f r e e  space wave number.  

0 

k-0 
N = e lec t ron  density. 

e = magnitude of e lectron charge.  

m = e lec t ron  mass.  

1/ = collision frequency of electrons.  
- 
Bo = D. C. magnetic flux density. 

Rationalized M. K. S. units a r e  used throughout th i s  study. 

Maxwell 's  f i r s t  and second equations a r e  

4 

(2. 1.3) 

(2, 1.4) 

(2. 1. 5 )  

(2. 1.6) 

( 2 . 1 . 7 )  

(2. 1. 8)  



- 4 -  

v x E  = -J"/"oH 

5 

(2. 1. 9)  

(2 .1 .  10)  

jot 
The r.f. fields a r e  assumed to  be monochromatic and an  e t ime  convention 

- 
is used. J is  the impressed  e l ec t r i c  cu r ren t  densi ty  of the sou rce  in the med i -  

um. 

2. 2 Lorentz '  Reciproci ty  Theorem for  a n  Anisotropic Medium 

In  th i s  sect ion the "induced e. m. f. I' method of impedance calculation will 

be der ived  f r o m  Lorentz '  relation, (Harrington, 1961). 

- -  - 
Consider  sou rces  (J M ) which produce f ie lds  (E H. ) i n  a medium a' a a' a 

charac te r ized  by the constitutive pa rame te r s  ( %Ea,po). Now consider  a s e c -  

ond s e t  of sou rces  and f ie lds  in a second medium using subscr ip t  "b". If both 

s e t s  of sou rces  a r e  of the same frequency, o, then Maxwell 's  equations a r e  

and 

- -  E -  - 
V x H a  = j o E  K E + J a  

o a a  

- -  - -  
V x E b  = -jopoHb-Mb 

Using a well  known vector identity, it i s  eas i ly  shown tha t  
- - - - -  - - -  - - -  VI  (H X E ~ - H  XE ) = jac ( E ~ .  K~E,-E;  i ib~b) t a b a  0 

- - - -  - - - -  
(E . J -E a J ) t (Ha'Mb-HC Ma) b a a b  

(2. 2.1) 

( 2 .  2. 2) 

( 2 .  2.4) 

(2 .  2. 5 j  

Taking a volume in t eg ra l  of both s ides  of (2. 2. 5 )  and invoki'ng the divergence 

theo rem we have 
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wh 

4 - - - -  
H xE ) .nda  = JHaXEb- b a 

v 
e r e  x i s  the sur face  of the vol 

J tH * M  -H * M  ) d v  
b a b b a  

.ume V, and fi is the outward 

dv 

poin 

(2. 

king 

2. 6 )  

unit vec E 

t o r  n o r m a l  t o  the su r face f .  

If the volume V excludes all the sou rces ,  then the second volume in t eg ra l  

on the r ight  hand s ide  of (2.. 2 .6)  is  zero.  

Thus, 

The right hand s ide  of (2. 2. 7 )  wil l  be z e r o  if 

that  i s  
- T= - T= - 
Eb K E  a a = E  a KbEb 

- T= - ,- T= T- T 
Ea b b b Kb Ea) 

K E  = ( E  but 

Thus, 
= T  = 

( 2 0  2. 8) w i l l  be t r u e  i f  K = K 
b a 

(2. 2. 7 )  

(2. 2. 8 )  

(2. 2. 9 j  

(2 .  2. l O j  

(2. 2. 11 1 

This wil l  be t r u e  i f  the  d i rec t ion  of the magnet ic  field is  of the opposite 

s e n s e  i n  medium a" a s  compared  to medium "b". In  this  event 

jr/lEaxEb-EbxEa)e A nda = 0 

z 
(2. 2. 12)  

If we a s s u m e  that the radiat ion condition i s  sat isf ied,  then the s u r f a c e  integral  

of (2. 2. 12) reduces t o  a n  in t eg ra l  over  the su r face  of the sou rces .  - . tmposing 

the boundary conditions for  a p e r f e c t  conductor,  



A -  J = nxH 
- 

a a 

- - 
M = -RxE 

a a 

(E . J  -H - M  ) d a  = 0 JL, b a b a 
and (2. 2 .12)  becomes 

7 

(2. 2. 13)  

(2. 2. 14) 

(2. 2. 15 )  

L 
where  2 is the su r face  of the sources .  

If t he  cu r ren t s  a r e  a s sumed  t o  be excited by voltages a c r o s s  a v e r y  s m a l l  

gap of widthe,  then 

V 

and 

A -  ~a M = -nxE = -nx- 
a a 4 

$ E b . d l =  I b = 2 d K  b 

- 
(2. 2. 16)  

(2. 2. 17)  

A -  Now since nxE The w i r e  has  a radius  of s. is z e r o  except at the gap, 
a 

(2. 2. 18)  

~ 

where  r" is the sur face  of the gap. But in  th i s  c a s e  d a  = ~ T T S ~  (2. 2. 19 )  

s o  that J{Eb*Eada = -V a b  I (2. 2. 20) 

z' - 
Thus, (2. 2. 15)  becomes (2. 2. 21) 

Setting J = J  = J  (2. 2. 22) 

V I = $Eb- Jada 
a b  

z' - - - 
a b  

We have (2. 2. 23)  

- 
It m u s t  be r e m e m b e r e d  that E mus t  be calculated under the conditions of r e -  

ve r sed  s teady magnetic field, as shown by (2. 2. 11). However, it will  be de-  

mons t ra ted  l a t e r  that  the e l ec t r i c  field v e r y  n e a r  t o  the sou rces  i s  not a func- 
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tion of the sense  of the D. C. magnetic field and s o  we can  calculate  the input 

impedance of the sou rce  in  the magneto-p lasma using (2. 2 .  2 3 ) ,  without r e v e r s -  

ing the sense  of the magnetic field. 

2 . 3  The Loop Geometry and the Cur ren t  Density 

The loop of e lec t r ic  c u r r e n t  used i n  this chapter  is  a s sumed  to  be i n  the 

x-y plane. 

radius  of the f i lamentary conductor i s  s. 
It c a r r i e s  a uniform cu r ren t  I. The rad ius  of the loop is  and the 

Po 

Because the rad ius  8 is v e r y  small, 

the c u r r e n t  density is  mathematical ly  approximated by a line sou rce  as 

( 2 . 3 .  1)  

where  d f - f  and $ ( z )  a r e  the Dirac-Del ta  Functions and 2 is the unit d i rec t ion  

vector tangent to the loop in  the x-y  plane. 

0 

It should be noted that  the conduc- 

to r  radius ,  6 , cannot be s e t  equal t o  z e r o  throughout the study, because,  as 

wil l  be seen,  the integral  representa t ion  for  the impedance would not converge.  

The loop radius f" is assumed to  be v e r y  small i n  t e r m s  of f r ee - space  wave- 

lengths. That is k P &  1 ( 2 . 3 .  2 )  
0 0  

2.4 The Impedance Express ion  for  a Smal l  Loop 
- 

If the expression for  the loop cu r ren t  J i s  substi tuted into the impedance 

express ion  of \ 2 *  2. 2 3 )  one obtains, 

that is ,  

L 

( 2 . 4 .  1)  

( 2 . 4 .  2 )  
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where  f and 

Dirac-Del ta  Function and integrating on 

and the usual  cylindrical co-ordinates.  Using the proper ty  of the 

one obtains, 

Z i n =  - $1 E&z)db  

which i s  a line integral ,  where  

d l  = fb6( z)db 

Thus, (2.4.3) becomes 

Applying Stokes'  t heo rem this becomes 

where  2'' i s  the a r e a  enclosed by the loop. 

Using (2. 1. l o ) ,  Maxwell 's  second equation, we have 

o r  

(2.4.3) 

(2.4. 4) 

(2.4. 5)  

(2,. 4. 6)  

(2. 4. 7) 

(2. 4. 8) 

In this expression H m u s t  be calculated a t  z=8, the radius  of the f i lamental  

w i re  i n  o r d e r  that  (2. 4. 8) yield a finite resu l t ,  as discussed in  the previous 

Z 

section. 

Equation (2.4. 7 )  is the famil iar  express ion  for  the impedance  of a "mag-.  

It is c lear  that  the H-field no rma l  to  the plane of the loop m u s t  
- 

netic dipole. 
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be obtained for the impedance calculation. 

2.5 The Four i e r  T rans fo rm Pair and the Trans fo rmed  Maxwell’s  Equations 

The following equations define the F o u r i e r  t r a n s f o r m  pa i r  t o  be used in 

this  study. 

- 
r 3  
d k  

-- n2 -- 
H e r e  A(k)  is “the Four i e r  t r a n s f o r m  of the vector  A ( r ) ,  ‘ I  

- 
where  r = x$ty$tzZh 

and 
- 
k = k Gtk v k  2 1 2 3  

If one a s sumes  that  t h e r e  a r e  sl ight l o s s e s  i n  the medium, s 

(2. 5. 1 )  

(2.5. 2) 

(2. 5 .3 )  

(2. 5.4) 

that  the 

f ie lds  a t  infinity a r e  zero,  and the radiat ion condition i s  sat isf ied,  Maxwell‘s 

t r a n s f o r m e d  equations a r e  
rv - N - -  

AH jkxE = - j w  

-c!! -32 nr 
jkxH = + j o  E K E t  J 

0 

(2. 5. 5 )  

(2. 5 .6)  

The advantage of introducing the F o u r i e r  t r a n s f o r m  i s  n’ow apparent  because  

(2. 5. 5 )  and (2.5-6)  a r e  pure ly  a lgebra ic  equations a s  opposed to  the differen-  
- 

ta i l -equat ion form of Maxwel1:s equations i n  r e a l  space.  The t r ans fo rmed  E 
- .- 

and H fields a r e  now expres sed  in  the Four i e r  domain a s  functions of k. 
- 

It is  worth noting that  K was not affected by the t r ans fo rma t ion  because  the 

medium is assumed to  be infinite in  extent, and homogeneous. 
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N 

Solving (2. 5. 5) and (2. 5 .6)  for  E yields, 

c3 =- -=- I -  
LH = -jkxK J 

= 
when L is a tensor  opera tor  and 

= --1= 
L = (kxK k x t k o 2 r )  

(2. 5. 7 )  

(2. 5. 8) 
- - - 

H e r e  Tis the identity opera tor  and ko is the f r e e  space  wave number.  kx  is an  

ope ra to r  r ep resen ted  by 

-k3 

kl 

0 
k2 

.kl 
0 

Solv.ing (2. 5. 7 )  one obtains 

I 

- 
Inverting one obtains 

=- 1 0 t k ~ ~ ~ ~ t k o ~ ~ ~ ]  
L = -  

ko (a tko  b t k o  c )  
2 4 2 

(2.5. 9)  

(2.5. 10) 

(2.5. 11) 

- 
Before  proceeding any  f a r the r ,  the cyl indrical  co-ord ina tes  of k a r e  defined as 

(2.5.12)  T k = K C o s  
1 

and therefore ,  

Ern (2. 5. 11.) 

7 k ' =  K Sin 
2 

2 2 2  
2 K = k l  + k  

2 2 -T I 

i N o , ?  ( K  K tK k )kk 
J '.I 1 0 3  

and E h a s  components N -l 

: J  - . r  1 - 1, i j  ( - ' )  
.,., 1 

where  
2 2 2  2 

1 (K1 -K1l  
= - K  1: I< -k 

N1, 11 0 1  

(2. 5. 13)  

(2 .  5. 14)  

(2. 6. .15.) 

( . ! .  ' )  

(2. 5. 16) 



, 

2 2 2 
= -jK K k -(K1 -Kl l  )klk2 N1, 12 0 11 3 

N1, 13 0 1 1 3  0 

N1, 21 0 11 3 

N1, 22 0 1  2 

N1, 23 0 1 2 3  0 1 1 1 3  

N1, 31 0 1 1 3  0 1 1 2 3  

N1, 32 0 1 2 3  0 

= -K K k k t j K  Kllk2k3 

2 2 2 
= JK K k -(K1 -Kl l  )klk2 

2 2 2  2 
-K1l  = -K K k -k (K1 

= -K K k k -jK K k k 

= -K K k k -jK K k k 

= -K K k k t J K  Kl lk lk3  

2 2)K2--2K Klk3 2 
-K1 1 0 

= -(K1 

2 

N1, 33 

-K1 ‘)T - .- 
N = K ( K  

2 0 1  and 

- 
In the denominator,  which is the de te rminant  of 

2 2 2 
a =  -k (KIK +K k j 0 3  

2 2  2 
2)K2t  K1 KO (k t k3 ) 

1 -K1 1 b = (K 

2 2 
c . =  -Ko(K1 -K1l j and 

1 2  

(2. 5. 17)  

(2. 5. 18) 

(2. 5.19) 

(2.5.20) 

(2.  5. 21) 

(2. 5. 22) 

(2. 5. 23) 

(2. 5. 24) 

(2.  5. 25) 

(2. 5. 26) 

(2. 5. 27) 

(2. 5. 28) 

=-  - 
It  should be noted that  N kx = 0, the  z e r o  opera tor .  Thus, upon substitu: 

0 

tion, (2. 5. 10)  becomes 
2= --I- N 

LIZ [E,t k o  N2]kxK J 

2 4 H = J  
( a tko  btko c )  

- 
and using (2. 5 .2)  to  inver t  the t r ans fo rmed  H field 

(2. 5. 29) 
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( 2 . 5 .  3 0 )  

2.6 The Transformed Current  Density 

A l l  of the algebraic  factors  of (2. 5. 29) have been given except fo r  the 

t ransformed c u r r e n t  density. 

4 Using (2. 5.'1) . 

-&  - - 
Express ing  k and r i n  polar  co-ordinates where  

x = p c o s  fd 

y = p Sin 

f k = K C o s  
1 

k = K Sin 

b = -2 Sin pk$ c o s  

2 
4 

and sett ing 

(2.6. 1 )  

(2.6. 2) 

(2.6. 3 )  

(2.6.4) 

(2.6. 5 )  

(2.6.6) 

We have 

0627~00 

S = $J I ( - 2  Sin b t g  c o s  b)g(p-f 0 )g (z )e  -j['P Cos(b-7)tk3z]pdfdbdz (2. 6. 7 j  

-000 0 

Integrat ion on z and then o n f ,  and using the properties of the Dirac-Delta 

Function yields 

A familiar identity that will  be useful in this  study is  



c 

dt  (2.6.  9 )  jnt  J Z  Cos t d n 
2.rr(j) J ( z )  = e e 

n 

J (2) is the  Besse l ’ s  function of the f i r s t  kind of integer  o rde r ,  n. 
n 

h A Expanding (-x Sin 6-t-y C o s  b )  into exponential  r ep resen ta t ion  allows the use  

of (2 .6 .  9 )  t o  evaluate (2.6.  8). 

The r e s u l t s  i s  
e 
J = 2 l ~ j Z ~ ~ J ~  (KFo)[P S i n r  - 9 C o s J ]  

2 ~ 

14 

21T 

(2.6.  10) 
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CHAPTER 3 THE QUASI-STATIC APPROXIMATION; 
- 
B NORMAL TO THE LOOP 

0 

3. 1 Introduction 
N = - 

Once H is de te rmined  as in  (2. 5 .29) ,  the  i n v e r s e  F o u r i e r  t r a n s f o r m  of H 

wil l  yield H 

2 4 
( a t k o  b t k o  c),  of (2. 5. 2 9 ) ,  where  

by using (2. 5. 30) .  Upon examination of the denominator ,  
Z 

( a tko  2 b tko  4 c )  = [-k 2 (KIK 2 t K  k 2 2)K2tKlK 0 (k 
0 3  

(3 .1 .1)  

it becomes  evident tha t  the difficulty of solving (2. 5. 30)  is extensive and s o m e  

kind of approximation mus t  be introduced. 

A It i s  important  t o  r e c a l l  that, according to  (2. 2. 23), the z -d i rec ted  mag-  

net ic  f ie ld  will  be integrated over  the a r e a  enclosed by the loop, and thus, we 

a r e  essent ia l ly  in te res ted  in  the near  field representa t ion  of H . 
Z -- 

The approximation that wil l  be used t o  faci l i ta te  the solution of (2. 5.30) is  

known as the quas i - s ta t ic  approximation, which, i n  essence ,  yields the low 

4 f requency approximate solution of the z-component of the magnet ic  field. How- 

eve r ,  a difficulty a r i s e s  when one cons iders  tha t  the  consti tutive p a r a m e t e r s  

K , and K a r e  f requency dependent, thus, one m u s t  a s s u m e  tha t  a con- 
K I J s  0 11 

- 
s tan t  permi t t iv i ty  tensor ,  e K, is  a valid descr ip t ion  of the medium a t  low f r e -  

quencies.  Since ko 

z e r o  co r re sponds  t o  a low frequency approximation. 

0 

2 2  = w /4 E , taking the limit of (2.  5. 29)  as ko approaches  
0 0  

One m u s t  r e m e m b e r  tha t  
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the rad ius  of the c u r r e n t  loop is  assumed to  be v e r y  s m a l l  compared  to  the 

f r ee - space  wavelength, s o  it i s  a reasonable  approximation to  consider  that  

the wavelength approaches infinity a s  far a s  the n e a r  fields of this  ve ry  s m a l l  

loop a r e  concerned. 

One might wel l  a s k  i f  it i s  t r u e  that  the wave-length -- i n  the p l a s m a  ap-  

proaches  infinity, especial ly  consider ing the fact  tha t  the d i spe r s ion  su r faces  

in  a n  anisotropic  p l a sma  a r e  anisotropic  too, and infinite in some  d i rec t ions  in 

a l o s s l e s s  plasma.  

medium. 

The answer  is found by assuming ve ry  s l ight  l o s ses  in  the 

Under these  conditions, the d i spe r s ion  su r faces  a r e  finite and l e t -  
- L 

ting ko approach z e r o  cor responds  to  assuming an  infinite wavelength in  all 

d i rec t ions  i n  the p lasma.  

2 
Now letting ko approach z e r o  i n  (2. 5. 30), one obtains 

3 .  2 The Evaluation of the Quasi-Static Impedance 

Upon evaluation of the integrand of ( 3 .  1. 1 )  one obtains the following form.  

The fac t  tha t  none of the p l a sma  p a r a m e t e r s  appear  in this  quas i - s ta t ic  

representa t ion  i s  important.  One would, therefore ,  expect that  the impedance 

calculated f rom this  H will  be the impedance of a s m a l l  loop in f r e e  
z Q. S. 
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space.  That this is the c a s e  will  now be shown. 

The integration on can  be performed by using the identity (2.6.  9). This 

yields. 

~ ~ f 2 J l ( f i K ) J o ( f K ) e  jk 3 z dKdk3 

(3. 2. 2)  - - 
Z 27T 2 2  H 
Q. S. 4 0  (K +k3 1 

Since we a r e  in te res ted  in  the value of H over  the loop, z i s  s e t  equal to  
Z 
Q. S. 

s ,  the radius  of the wire .  

- 
A contour integration i s  now per formed in  the complex k -plane and is 

3 

closed in  the upper half plane. The resu l t  is 
ob 

-KS H Z - - %LKJ,(K,)J  2 0 (Kf)e dK 
Q. S. 

The impedance formula  i s  therefore ,  

(3. 2.3) 

27TpoccI 
Zin Q. S. - - vlj KJ1(foK)J 0 ( f K ) e - K 5 d K d p b  (3. 2. 4) 

0 0  0 

Integration on b introduces a factor  27~. Employing the following identity 

(3. 2.4) becomes 

(3. 2. 5)  

(3. 2. 6) 

It.is uite apparent  that  i f  r i s  ,set 2 u a l  to zero,  the in tegra l  of (3. 2 . 6  will  ot 
\ir . z 5i - .  . -  )2. I. ,;p 

C 



c o n v ~ g  ge a r’Sitt+g 

(3. 2 .6 )  becomes 

where  

t o K = x  

Zin = jubLr / J12(x )e  -Rx dx 
Q. s. 

J 
P O  
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(3. 2. 7 )  

(3. 2. 8)  

(3. 2. 9 )  

R i s  dimensionless  and i s  the r a t i o  of the w i r e  rad ius  t o  the loop radius .  

Luke (1962) gives the following in tegra l  

og 

Thus, 

I p, 9, a ) = /e-RxxAJr(ax)JII (bx)dx 
0 

(3. 2. 10)  

(3. 2.11) 

2 

(3. 2. 12)  2 8 1  Luke a l so  gives I(1, 1, 0) = - [ ( l - ~ ) K ( d ~ ) , - . E ( 0 ( ~ ) ]  
rrol 

where  K and E a r e  ell iptic in tegra ls  of the f i r s t  and second kind, and 

d12 = (1 tR2 /4 ) - l  (3. 2. 13)  

Collins (1960) gives the self-impedance of a s m a l l  loop in  f r e e  space  a s  

where  

4 2  
Zin = jup 0 0  4 (2-R)[(1-  -i-)K(M2)-E(M2)] 

2 
) - l  

2 R o( = (1 t  
2 4(1 - R )  

(3. 2. 14)  

(3. 2. 15) 

These resu l t s  a g r e e  and thus,  the quasi-s ta t ic  impedance of the s m a l l  

loop is equal to  the f r e e  space  impedance, as was anticipated i n  (3. 2. 1). 
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CHAPTER 4 A FIRST ORDER CORRECTION TERM 

TO THE QUASI-STATIC IMPEDANCE; 
- 
B NORMAL TO THE LOOP 

0 

Since the der ivat ion of the quasi-s ta t ic  impedance yielded a r e s u l t  inde-  

pendent of p l a sma  p a r a m e t e r s ,  i t  is  des i r ab le  t o  find a first  o r d e r  co r rec t ion  

t e r m .  We repea t  equation (2. 5. 29)  f o r  the  E field. 

I 

H =  j 7 A 

(at ko b t  kor c ) 
(4 .1 .1 )  

t he  denominator  i s  divided by long division into the numera tor ,  one obtains 

ry 1- 2 
= 2- 1 ko b ko nr 

H = j [Nl tko  N2](;ir-- a 2 a a 
(4. 1. 2 )  

2 
Retaining only the z e r o  o r d e r  and f i r s t  o r d e r  terms in ko , (4. 1. 2)  becomes 

- - - - - - 
2 N2 bN1 --I- N 

(4. 1. 3 )  
- N1 
H = j[-tko (,--)]kxK J 

a2 a 

The first  term in  (4. 1. 3 )  i s  jus t  the quas i - s ta t ic  t e r m  that was  used i n  ( 3 .  1. 11. 

Le t  us ca l l  the O(ko j t e r m  Hc, the  co r rec t ion  t e r m .  
- 2 

That  i s  - 
d -- 1- fu 2 bN1 - ko = 

H = j - ( N 2 - F )  kxK J 
C a (4. 1.4 

- ko &' 

H = -2~-1pJ ( K y ) [ - K  0 KIK 
z c  a 0 1  o 

(4. 1. 5 )  
2 2 3 

K(KIK tKok3 ) (S in7  f CosJ ) t jK l lK  ( S i n 1  - 

Note that all the p l a sma  p a r a m e t e r s  appear  in this  expression.  
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Using the expressions for  impedance and applying the inve r se  Four i e r  t r a n s -  

form,  we conclude that 

Upon substi tution and r ea r r angemen t ,  we have 

- Z in - 
c o r r .  

KJl iKfo)P[-K k 2 .  ) ( S i n 1  t C o s f )  - 
0 3  

2 2 
0 

2 2  
(K t k 3  )cKokj + K I K  1 

j 

Again we se t  z=g2 the  rad ius  of the wire .  Integrat ion on i s  pe r fo rmed  

using the identity (2 .6 .  9).  

s i s t  upon integration over  

multiplied by b. 

It is obvious that  only the factor  -K K K will p e r -  

t e r m s  in the factor  

0 1  

Jand because of the Sin 3 

It is a t  this point that  the p l a sma  p a r a m e t e r  K d i sappea r s  f r o m  the 11 

f i r s t  o r d e r  co r rec t ion  t e r m  t o  the impedance. 

Integration of is done using (3 .  2. 5). P 
Thus I 

0 

Zin C = -JU/~~, 2 (4, 1. 8 )  

Define (4, 1. 9 j  
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where  
2 

P = K1/Ko 

Breaking the integrand into par t ia l  fractions (4. 1 .  9)  is  wri t ten a s  

e J k 8  dk 
3 3  (4. 1 .11)  - - 1 f “““...,p (k3 2 +P 2 2  K ) 

Ik3 K2(P-1) -ob (k3 + K )  
-e 

The in tegra l  is  now in  such a f o r m  that contour integrat ion can be per formed 

- 
in the complex k -plane. Assuming slight l o s ses  i n  the medium, s o  that  the 3 

poles a r e  never  pure  rea l ,  we s e e  that 

- P K 6  
- 1 Tr -KS e 

[e P 
- - 

3 2  
Ik3 K (p -1) 

(4. 1. 12) 

Setting KPo = x (2. 8. 13) becomes 

where  R is defined by (3. 2. 9). 

At this point it i s  useful to  introduce the following definition 

(4. 1. 15) 

C i s  the c i r cumfe rence  of the loop i n  f r ee - space  wavelengths and is  v e r y  A 
small .  Thus, (4. 1. 14) i s  
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p should be chosen with a posit ive r e a l  p a r t  in  o r d e r  tha t  (4. 1. 16) should 

converge.  

An analysis of this  r e su l t  wil l  be made  l a t e r  on. 
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CHAPTER 5 THE UNIAXIAL APPROXIMATION; 
- 
B NORMAL TO THE LOOP 

0 

5. 1 Introduction 

As was shown in the previous chapter nei ther  the quas i - s ta t ic  impedance 

This nor  the f i r s t  o r d e r  co r rec t ion  t e r m  f o r  impedance w e r e  functions of K 

is just i f icat ion of the a rgument  that  the t ransposed  medium need not be used in  

11' 

the impedance expres s ion  given e a r l i e r  in this  repor t .  

m e t e r  which i s  a function of the  sense  of the imposed s teady magnet ic  field, BO. 

2 2 
K and K a r e  functions of Y and thus, only functions of Bo. 

K l l  i s  the only p a r a -  

1 0 

2 
It is m o s t  l ikely that, i f  h igher  o rde r  t e r m s  i n  ko 

would eventually appear  i n  s o m e  o r  all of the t e r m s .  

w e r e  calculated for  the 

impedance,  the fac tor  K 11 

But the fact  tha t  the loop is s m a l l  and only the nea r  fields a r e  requi red  leads t o  

the conclusion tha t  it would be useful to  cons ider  tha t  K i s  identically zero.  11 

There  i s  no r eason  t o  a s s u m e  that, in this  event, the r e su l t  for  the loop ' Lm - 

pedance would not be ju s t  a s  good a n  approximation, o r  be t te r ,  than the quas i -  

s ta t ic  approximation. 

Setting K l l  = 0 (5. 1. l j  

r e s u l t s  i n  making K a diagonal matr ix .  
- 

But the m o s t  important  r e s u l t  is  that  

the de te rminant  of 'f: is  factorable  into two s imple  fac tors .  

evaluation of the inverse  Four i e r  t r ans fo rm of H yielding a r e s u l t  that  is i n  

c losed f o r m  and which contains ko . 

This p e r m i t s  the 

"- 

2 
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5. 2 The Transformed Magnetic Field i n  the Uniaxial Medium 
cy - 

If one sets  K = 0 in ( 2 ,  5 .  8 )  and solves for  The ;-component of H,the r e -  11 

2 4 2 2  2 2 2 2 
But (a+ko btko c )  = - [K t k  -Klko ][KIK f K  k -KIK ko  3 (5. 2. 2 )  

3 0 3  0 

This r e su l t  i s  quite convenient because the second t e r m  of the denominator can-  

ce l s  with a factor in the numera tor .  

Thus,  (5.  2. 3 )  

/r 

Jx  is the x-component of the t r ans fo rmed  c u r r e n t  density.  Express ing  (5. 2. 35 

yi e lc! s 
d +2wIJvoJ1 Vyo)K 

(5.  2 . 4 )  
2 2  2 I3 = 

z (K t k 3  -K ko ) 
1 

Comparing this r e s u l t  with ( 3 .  2.  l ) ,  it i s  s een  that 

Q. S. 
2 

ko --j o uniax. 
(5. 2. 6 )  

Examination of (5. 2 .  5 )  shows that it is a funciion only of K and not of K 
1 0 

I This i s  somewhat disconcerting at f i r s t  until one solves  f o r  Ez  i n  the uniaxial 
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1 

I 

c a s e  and finds that is is equal t o  zero. Since the ro l e  of K i s  found i n  (2. 1. 1 )  
0 

a s  p a r t  of the consti tutive re la t ion  
- 
D = EzE 

0 

it i s  c l e a r  that  s ince  E z =  0 

(5.  2 .7 j  

(5. 2. 8) 

1' K plays no ro le  and thus,  the fields a r e  functions only of K 
0 

5 . 3  The Impedance of the Loop i n  the Uniaxial Medium 

Upon substi tution of (5. 2. 5 )  into the impedance formula  (2. 4. 8 ) ,  one ob- 

ta ins  

(5.3. 1 )  

Integrating on using ident i ty  (2. 6. 9 )  yields 7 

Again z i s  s e t  equal  t o g  and integrat ion on introduces a f ac to r  of  IT. The 

next integrat ion on using identity ( 3 .  2. 5 )  r e su l t s  i n  P 
( K P  0 )eJk3' dKdk3 

(5. 3 .3 )  
uniax. 2 2 

Zin 
(K2+k3 -Klko  

- 
The next integrat ion is per formed as a contour in tegra l  i n  the complex k - 

3 

plane which is  closed i n  the upper half plane. In  this  in tegra l  the poles of the 

integrand will  never  l i e  on the real axis if t h e r e  a r e  s l ight  l o s s e s  in  the m e d i -  
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urn.. making K complex, After  lntegratron on k 1s per fo rmed  1 3 

d K L - K  koL ‘ 
1 

and again sett ing K 6 = X  (5, 3 ”  5) 

and rear ranging  (5.  3 , 4 )  becomes 

where  C is deflned Ey (4  i .  1 5 )  and R b y  ( 3  2 ,  9) Of c o u r s e  a s h  -*a A 
( 5 .  3 . 6 )  reduces  t o  the  f r e e - s p a c e  impedance of a s m a l l  loop An anaiys is  of 

the impedance expres s ion  will  be m a d e  l a t e r  on i n  this stud6\;, 
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CHAPTER 6 THE UNIAXIAL APPROXIMATION; 
- 
B PARALLEL TO THE LOOP 

0 

6. 1 The Permi t t iv i ty  Matr ix  fo r  a ?-Directed D. C. Magnetic Field 

Up to  this  point the impedance of the loop has been calculated for  the case  

of the D. C. magnetic field no rma l  to the plane of the loop. 

Let us now a s s u m e  the same cur ren t  loop configuration a s  before,  but 

(6. 1. 1 )  A - 
a s s u m e  that Bo = y Bo 

- 
This case can  be represented  by interchanging the y-z  dependancy of K. Thus, 

the E i s  

(6. 1. 2 j  

6 .  2 The Transformed Magnetic Field 

A Again the z-component of the magnetic field is  needed to  calculate the loop 

impedance. Rewriting (2. 5. 10) we have 

(6. 2. 1 )  

- - --1- 
L = jkxK kx+ko2z (6. 2. 2) 

=- 1 .I 

L mus t  now be recalculated using the new representa t ion  of K f r o m  

- -. ~ . , ~  . -i ' ,?.) I i i , ,  i s  e&; ,  ( x  1 1  
(6. 1. 2) .  The invers ion  of is a ted ious  p r o c e s s  at beit.' This is especlafiy 

t rue  in the c a s e  when K In view of the a rgument  presented i n  the l a s t  

s e c tion, 

# 0. 11 

will  again be s e t  equal to z e r o  and the impedance of the loop in  a 
K1 1 
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uniaxial medium will  be calculated. Therefore ,  we set, 

0 0 rK1 - - 
0 

0 
K 

K =  l o  
Lo O K1 

It can  be shown that  

(6. 2. 3 )  

2 4 
2 

-ko - - 
L =  ( a ' t k o  b ' t k o  c ' )  (6. 2. 4) 

K1 2Ko 

where  a ' ,  b ' ,  and c '  a r e  the  s a m e  as defined by (2. 5. 2 ), ,(2. 5,  2 ) #  and (2. 5. 2 ) 

2 2 
except that  k and k a r e  interchanged everywhere.  

Upon completing the  invers ion  of 

2 3 
- 

and evaluation of H the r e s u l t  is  
z 

2 N 0 K tKlk32-yKoko2)] 

k2 - K1 ko '} 
t j  

H = ,  z ( a ' i k o  b ' t k o  
(6. 2. 5 )  

e4 N 
and substituting in  the values of J x  and J y  and wri t ing the whole express ion  in 

t e r m s  of the cylindrical  Four i e r  co-ordinates ,  (6. 2, 5 )  becomes 

2 2  

2 2 

2 2 
2 1 ~ 1  J (K ) K S i n  K K t K l k 3  -KIK ko  t K 1  Cos:{ K t k 3  -KlkoZ) ] ?I 0 0 

Z 2 2  2 2 2 2 
Po 1 fo ' H =  

[K t k 3  -Klko ][KIK C o s J  t K l k 3  t K  K Sin? -KIK ko ] 
0 0 

(6. 2 . 6 )  

The r e s u l t  i s  c l e a r l y  m o r e  complicated than the  c a s e  of the D. C. magnet ic  

f ie ld  n o r m a l  to the plane of the loop. 

6 .  3 .The' GvaLuation- of-the -1mpedahw iS icnI€hk €JmikkiaPiMedium 

Applying the i n v e r s e  Four i e r  t r a n s f o r m  t o  the expres s ion  of (6, 2 . 6 )  and 
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A then integrat ing the z -d i rec ted  magnetic field over  t he  loop, one h a s  the  follow- 

ing in t eg ra l  representa t ion  for  impedance. 

21T CQ 
2 j[K p C o s ( f - b ) t k $ ] -  

I, L (-. 
L )  .. J , ( K $ ~ ) ~ K  e 

2 2  2 2 2  2 2 
1 0  

[K t k 3  -K ko ][KIK K S i n 1  t K l k 3  -K K ko ] 
Zin  = 

1 

(6.3.  1 )  

. [Sin){K K 2 t K l k 3  2 -KIK ko 
0 0 

As before ,  z has  been  set  equal t o g .  

The  f i r s t  integrat ion will  be per formed on  b using the identity (2.6. 9). The 

r e su l t  is tha t  

J[K 2 2 2  t k 3  -Klko2f]dKdfdk3dy 

(6 .3 .2)  2 2  2 

[Sinf[K K 2 t K l k 3  2 -K K ko 
0 1 0  

[K 2 2  t k 3  -Klko  2 ][KIK 2 C o t F K  K SinJ’tKlk3‘-K K ko  ] 
0 1 0  

The next  integrat ion is pe r fo rmed  on using ( 3 .  2. 5 )  which yields P 
KJ12(Kp )ejk$ [Sin2f{K K 2 tK lk32-K K k o 2  

l o  4 

0 0 

21T 2 2  2 Zin  = 
[K +k3 -Klko ] -ago 0 

t K 1  C o s f l K  2 2  tkj2-Klko?]dKdJdkj 

[KlK2 C0:/fKoK 2 2  SinJtKlkg 2 ( 6 . 3 . 3 )  2 
-KIKokQ 3 

Next, t he  in t eg ra l  on  k wil l  be performed by the method of contour integrat ion 
3 
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- 
I i n  the complex k -plane. After extracting a fac tor  K the denominator  of the 3 1' 

integrand can be factored a s  follows 

2 2  2 
[k3 + ( K  -Klko ) I  = (k3 t jm) (k  3 - jm) (6. 3 .4 )  

where  m = 4- (6 .3.5)  

I 
0 2  2 K 2 2  

Also [K3 + ( K  Cos? t-K Sin? -K ko ) ]  = (k t j n ) ( k  -jn) (6. 3 .6 )  0 3 3 
K1 

where  
1 

n = J K  2 C o s y  t %K2 Sin2f -Koko 2 

K1 
(6. 3. 7 )  

' 2  

Thus, 

to 

2 2 I T a  

Zin = Ja'0fo 2 r K  J J K J 1 2 ( K ~ )  

0 0  

2 2  2 2 jk36 2 jkJ 

K1 ]dk3dK, (6.3. 8 )  t 
(k - jn)(k t j n )  

/fKl S i n J k  t K  S i n f m  )e  
3 0  

f 

3 3 3 3 (k3t  jm) (k3 - jm) (k t jn)  (k - jn)  
-@ 

Notice that  the t e r m  multiplied by Cos in  the numera to r  of (6. 3.3) has  a fac-  'r 
2 

to r  which cancels p a r t  of the denominator.  Notice a l so  the apperance  of m in 

the f i r s t  t e r m  of the numera tor .  

The contour of (6.3. 8)  i s  closed in  the upper half plane and again sl ight 

l o s ses  a r e  assumed to exis t  in  the medium s o  that the poles, m and n do not l ie  

on the r e a l  axis.  

The f i r s t  t e r m  of (6.3. 8) m a y  be broken into pa r t i a l  f rac t ions  and, thus, 

defining only the k integral  we have 3 
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2 2  
T -  f (Klk3 Sin?  t K  0 m2 Sin) )eJk$dk 3 

(k 3 t j n ) ( k  3 - jn)  dk3 
-a 

(6.3, 9 )  

Invoking Cauchy's  in tegra l  formula,  the r e su l t  is  

2 - m b  2 2 2 -mS 
S i n 7  2 ( -Klm 2 t K  m )e  

2 2  

S i n 1  (K m -Kln  ) e  
0 

2 2  t 0 

(m -n  )2jm 
= 2r j [  

(n -m )2jm 

2 -nS  
3 (6. 3. 10.) 

K1 C o s J e  

2jn 
t 

Collecting terms we have - 
2 e  -mS 

m t c o s  
'k3 = lTK1[ (6.3. 11)  

It i s  c l e a r  now that  m and n m u s t  be chosen to  have posit ive r e a l  parts in o r d e r  

to  i n s u r e  convergence of the remaining integrals .  

Thus, the  impedance fo rmula  f o r  the  loop i n  the s a m e  plane as the  D. C. 

magnet ic  f ie ld  in  an uniaxial medium is 
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and setting K = x, we have finally Po 
21T d, 

Zin = 2 e t e] m dxdf (6. 3. 13)  

where  

i 

(6.3. 14)  
2 

K 
x2 s i n 2 r  - K ~ c ~  

and ml = (6. 3. 15)  

R and C a re  defined as before by (3 .  2. 9)  and (4. 1. 15)  respectively.  
)I 

Since m' i s  not a function of , integration of is  e a s i l y  done for  the s e c -  7 P 
ond t e r m  of (6.3.  1 3 ) .  The r e s u l t  is 

00 

Z i n  = dx 

The first integral  of th i s  express ion  is equal t o  - half of the impedance of the 

loop i n  an uniaxial medium with the magnetic field n o r m a l  to  the loop. See  

(5. 3 .6) .  A discussion of this  r e s u l t  will  be given l a t e r  i n  the study. 



I 
t -  3 3  

CHAPTER 7 THE EXPERIMENTAL APPARATUS 

AND THE MEASUREMENT TECHNIQUE 

7. 1 Introduction 

It i s  obviously des i rab le  that the conditions tha t  w e r e  a s sumed  t o  ex i s t  i n  

the theoret ical  der ivat ion of the impedance be m e t  as closely as possible i n  the 

experimental  measurements .  The p lasma should be uniform and the electron 

t empera tu re  should be quite low. The p l a sma  chamber  should be la rge  enough 

to accommodate  a small loop, but for prac t ica l  reasons ,  small enough t o  allow 

the construct ion of magnetic coils around the chamber  for  the production of t he  

- 
steady magnet ic  field, Bo. 

In o r d e r  that  the proper t ies  of the medium be well  known, the g a s  used i n  

the chamber  should be pu re  and f r e e  f rom contaminants. Some method fo r  the 

experimental  determinat ion of the plasma p a r a m e t e r s  mus t  be included as well. 

One m u s t  a l s o  be able to  va ry  the p l a sma  p a r a m e t e r s  (X, Y, Z )  throughout 

a reasonable  range and with a ce r t a in  amount of indepedance of each other.  

Finally, an  accura te  method of impedance measu remen t  m u s t  be provided. 

The following sect ions of th i s  chapter desc r ibe  in de ta i l  the apparatus  that 

was  used to  achieve the goals outlined above, and the measu remen t  techniques 

employed t o  de te rmine  the p l a sma  pa rame te r s  and the loop impedance. 

7. 2 The Brush  Cathode Plasma 

It was  decided to  construct  a plasma chamber which employed brush  ca t -  

hodes and a brush  anode, as descr ibed by P e r s s o n  (1964). The brush  cathode 
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method was chosen because the resul t ing p l a s m a  exhibits p rope r t i e s  that  a r e  

des i r ab le  for  our purposes .  

P e r s s o n  (1964) gives a detai led descr ip t ion  of the b rush  cathode p l a sma  

which will  not be repeated he re .  

p rope r t i e s  follows. 

However, a review of the impor tan t  p l a sma  

The b rush  cathode p l a sma  is a beam produced p l a sma  tha t  i s  highly uni- 

fo rm and exhibits low e lec t ron  t empera tu re .  

allows the p lasma t o  fi l l  the  chamber  completely a t  re la t ive ly  low d i scha rge  

voltages and produces a s ingle  e lec t ron  when ionized. 

s t a t e  i n  na ture  and recombination p r o c e s s e s  predominate .  

tube c u r r e n t s  a r e  requi red  t o  produce a p l a sma  with a wide range  of p a r a m e -  

t e r s  (X, Y, Z ) .  Fur the rmore ,  s ince  m o s t  of the anode t o  cathode voltage d rop  

occur s  v e r y  near  the cathode, the r e s t  of the chamber  i s  essent ia l ly  f ie ld-free.  

Since the negative glow of the d ischarge  can  be made  to  fill the whole chamber  

beyond the cathodes, the p l a sma  i s  v e r y  wel l  behaved in that  t h e r e  a r e  no 

s t r ia t ions  o r  instabil i t ies.  The e l ec t ron  densi ty  of the beam is s e v e r a l  o r d e r s  

of magnitude l e s s  than the p l a sma  e lec t ron  dens i ty  s o  that  the p l a sma  i s  domi-  

nated by cool e lectrons.  

s i z e  of the anode. 

Helium has  been used because  it 

The p l a sma  i s  s teady-  

Relat ively s m a l l  

The negative glow i s  independant of the location and 

This permi t ted  flexibil i ty in the des ign  of the chamber .  

The double cathode geomet ry  was used s o  tha t  the intercathode separa t ion  

mini -  was  s m a l l  compared t o  the reaching d is tance  of the negative glow, thus 

mizing the non-uniformities assoc ia ted  with e lec t ron  beam attenuation i n  the 
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gas.  

tention that the p lasma is field-free. 

e lec t ron  t empera tu re  s o  low that electron-ion coll isions predominate,  while the 

electron-molecule  coll ision frequency is  relat ively low. 

The fact  that  low e lec t ron  tempera tures  w e r e  obtained supports  the con- 

The e lec t ron  densi ty  i s  s o  high and the 

A descr ipt ion of the numer ica l  values of p a r a m e t e r s  will be given l a t e r  on. 

7 . 3  Construction of the  Brushes 

The brush  used by P e r s s o n  consisted of a n  a r r a y  of finely pointed tungsten 

w i r e s  fas tened  to  a base  plate. 

l y  connected at the base  plate by a eutectic solder .  

A l l  the wi re s  w e r e  e lec t r ica l ly  and mechanical-  

A s imple  d ischarge  tube employing one cheaply constructed b rush  cathode 

was built to  de te rmine  i f  the  desirable  p rope r t i e s  l is ted by P e r s s o n  could be 

achieved for  the chamber  s i ze  that was needed for  our  purposes .  

for  the tube was made  by dropping d ime-s tore  pins through a copper m e s h  

( sc reen )  and then soft soldering the pin heads to  the  mesh .  

ed of a copper  ring, and two Langmuir probes  w e r e  included i n  the chamber  fo r  

plasma m e  as u r  ement  s . 

The cathode 

The anode cons is t -  

This tube worked v e r y  wel l  initially giving the des i r ed  uniform, low t e m -  

p e r a t u r e  plasma,  and an appropriate  e lec t ron  density. However, due to  the 

cheap construction, sputtering became a problem. 

brushes  t o  be used had t o  be constructed of higher quali ty m a t e r i a l s  and built 

t o  l a s t  many  hours  without outgassing significantly o r  being affected by high 

tube cu r ren t s .  

It was c l ea r  that  the 
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Following Pe r s sonS  the w i r e s  f o r  the new b rushes  w e r e  made  of tungsten, 

An etching appara tus  and w e r e  25 mi ls  i n  d iameter  and about 1. 5 inches long. 

was constructed to point 100 of the tungsten w i r e s  at a t ime.  

w e r e  mounted on a rotating wheel which dipped them, i n  s e t s  of 10 w i r e s  at a 

t ime,  in  and out of a solution of KOH and water .  

ed i n  the solution completed a D. C. c i rcu i t  resul t ing i n  the  etching of the tung- 

sten.  

longer than the base of the wi re s .  

w i r e s  f r o m  25 mi ls  at the base  to  l e s s  than 1 mil at the point. 

was used and the p r o c e s s  of etching 100 pins took about 15 minutes ,  

The 100 w i r e s  

The pins  which w e r e  i m m e r s -  

Because of the  rotat ion of the wheel, the t ips  of the w i r e s  w e r e  i m m e r s e d  

This  resu l ted  i n  an  even taper ing of the 

A 20 V D C  s o u r c e  

Once a sufficient number of pins was etched, they w e r e  mounted i n  a j i g  of 

compressed  carbon i n  which holes  w e r e  dr i l led  at a separa t ion  of 6 0  m i l s ,  cen-  

t r e  to  cent re .  

One hole was dr i l led  for  each pin and a total  of 1669 pins w e r e  used for  

each cathode. 

plate  and the  blunt t ips  of the pins. 

the pins, mounted in  the jig and sea ted  on the plate, w e r e  heated to  about 

1100 C i n  a hydrogen furnace.  When the a s s e m b l y  cooled off, the  carbon jig 

was removed leaving the 1669 tungsten pins fas tened to  the base  plate at 60  m i l s  

separa t ion  f rom each  other .  

A thin l aye r  of nickel was electroplated onto a molybdenum base  

A copper pas te  was  placed on the plate  and 

0 

The anode was constructed in  the s a m e  manner  using a s m a l l e r  base  plate  

and fewer pins. A brush  anode provides  be t te r  e l ec t r i ca l  contact with the nega-  
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t ive  glow and is assumed to  have a l a r g e r  effective a r e a  than a s imple  plate of 

copper. 

7 .4  The Vacuum System 

Before the chamber  is f i l led with pure  helium, it is n e c e s s a r y  t o  evacuate 

as much  air as possible. 

pumping the chamber  down to  a p r e s s u r e  of 4 x 10 mm of mercu ry .  Since the 

p r e s s u r e s  used in the experiment  were  of the o r d e r  of 0 .5  mi l l ime te r s  of mer-  

cury,  this r ep resen t s  a n  ini t ia l  volume ra t io  of contaminant (air)  t o  gas  (He) of 

The vacuum sys t em that was  used was  capable of 

- 5  

- 5  
8 x 10 

sur face  of the g lass  chamber  by using a high voltage sparking coil. As soon as 

the p r e s s u r e  appeared t o  be stationary,  the chamber  was back-filled with He at 

about 1 mm and a d ischarge  c u r r e n t  run through the chamber .  This resul ted i n  

the cleaning of the cathodes due to  ion bombardment  and was  charac te r ized  by 

bright, sporadic  f lashes  at the cathodes. 

unstable, the d ischarge  polar i ty  was  r e v e r s e d  and the anode was  cleaned i n  a 

s i m i l a r  manner .  

whole p r o c e s s  repeated until a sat isfactory low p r e s s u r e  was  maintained. The 

durat ion of the whole p rocess  var ied f r o m  hours  to  days,  depending on the con- 

dition of the chamber  and its electrodes.  

70. During the pump-down precedure,  it was  n e c e s s a r y  to  outgas the 

When the cathodes w e r e  no longer 

Then the pump down procedure  was  again initiated and the 

A m a j o r  consideration of the vacuum sys t em was,  of course ,  the leakage 

r a t e  of the chamber .  As can  be 

seen  i n  F igure  1, the leakage rate over a period of an hour amounted t o  about 

Only v e r y  slight leakage could be tolerated.  
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1.4p which r ep resen t s  an  introduction of 0. 28% contaminant by volume. 

7.5 The Glass  Discharge Chamber 

The  g l a s s  d i scharge  chamber  was constructed of a cyl indrical  tube of g lass  

with a cathode mounted at each end of the tube and the anode at the mid-point 

along the  axis of the  tube as shown in F igure  2. 

d i ame te r  and approximately 15 inches long. The e lec t rodes  w e r e  inser ted  into 

the tube and supported by me ta l  tabs  which w e r e  sprung against  the inner  wal ls  

of the chamber .  

through a uranium g l a s s  s e a l  t o  the outside of the chamber .  

spacing was  approximately 12 inches and the negative glow of the plasma was  

eas i ly  m a d e  t o  f i l l  the whole chamber  i n  between the t ips  of the pointed w i r e s  

of the electrodes.  

7.6 The D. C. Magnetic Field Coils 

The tube was  3 1/2 inches i n  

The e l ec t r i ca l  connection f r o m  each  base  plate was  passed  

The inter-cathode 

In o r d e r  t o  produce a s teady magnetic field inside and along the axis of the 

cyl indrical  d i scharge  chamber ,  two identical coi ls  w e r e  constructed.  Each  

coi l  f i t ted quite c losely around the glass chamber  and they w e r e  mounted as 

c lose  together  as was  permit ted by the g lasswork  which supported the anode 

and the small loop. Special  consideration had t o  be given t o  heat diss ipat ion in 

the co i l s  because they c a r r i e d  cur ren ts  of the o r d e r  of 22A, and the heat  l o s s e s  

in  the coils w e r e  of the o r d e r  of 500 wa t t s .  

fo rced  air fan. 

Each  co i l  was air-cooled by a 

F igure  3 shows the value of the plasma p a r a m e t e r  Y at 1 G Hz produced by 
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the coi ls  at the location of the s m a l l  loop a s  a function of coi l  cur ren t .  The 

magnet ic  field was measu red  by means  of a Hall  probe. 

The power supply for the coi ls  consis ted of a full wave r ec t i f i e r  and a bank 

of R-C f i l t e rs .  The c u r r e n t  was var ied  by changing the A. C. input t o  the r e c -  

t i f ie r  by means  of a Var i ac  t r a n s f o r m e r .  

Throughout the exper iment  the value of the p l a s m a  p a r a m e t e r  Y was d e t e r -  

mined f rom the D. C. coi l  c u r r e n t  by means  of the ca l ibra t ion  cu rve  a l r eady  

shown. 

7.7 The Smal l  Loop 

The s m a l l  loop used in this  exper iment  was constructed by forming the in-  

n e r  conductor of a rigid 50 ohm coaxial  l ine into a loop which was then spot-  

welded t o  the outer m e t a l  sheath of the coaxial  line. 

The loop dimensions w e r e  a s  follows. The loop rad ius ,  

p = 0.5585 c m  (7. 7 .  1)  
0 

and the w i r e  d i a m e t e r s ,  was  

s :z 0. 0458 c m  (7.7. 2 )  

These  dimensions w e r e  de te rmined  by the use  of a ca l ibra ted  microscope .  

These  dimensions led to  a value of the r a t i o  R,  given by ( 3 .  2, 9 )  of 

( 7 . 7 . 3 )  

Since it was  important  t o  i n s u r e  tha t  the p l a sma  did not diffuse to the meta l  

shea th  of the rigid coaxial  line, it was  enclosed i n  a g l a s s  tube a s  shown in 
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col lapse the ion sheath which sur rounds  it. In  this  region, the effective a r e a  

of the probe i s  unknown because of the ion sheath.  

essent ia l ly  due to e lec t rons  and the s lope of the  l ine A B yields the e l ec t ron  

The c u r r e n t  t o  the probe  !s 

t empera tu re .  

The s lope m is 

eVPA m = -  
e k T  (7 .  8. 1)  

s o  a v e r y  s t eep  s lope cor responds  to  a low e l ec t ron  t e m p e r a t u r e ,  r e  is the 

magnitude of the e lec t ron  cha rge  and k i s  Bol tzman ' s  gas  constant,  

A s  the  probe i s  m a d e  m o r e  posit ive with r e s p e c t  t o  the anode, the ion 

shea th  surrounding the probe col lapses  at C and the  effective a r e a  of the probe  

i s  equal t o  its physical a r e a .  The probe c u r r e n t  a t  point C i s  

I = JA ( 7 .  8, 2 1  

where  J i s  the cu r ren t  densi ty  and A the physical  a r e a  of the probe, which 1s 

known. But J is proport ional  to  Ne 7, where  N i s  the e l ec t ron  density,  and V 

the  t h e r m a l  velocity of the electron.  

f r o m  the electron t empera tu re  a l r eady  de termined ,  thus,  only N is unknown 

The t h e r m a l  velocity is  eas i ly  calculated 

and can  be calculated.  

E f f o r t s  were  made  t o  design aridybhild 'a Jogtt.i.ithimic arnq5lifier'whic.h would 

fac i l i t a te  the display of the probe  cha rac t e r i s t i c s  on a n  osci l loscope.  

the  range  of measurable  probe c u r r e n t  was over  5 decades  and the des ign  

problems became too t i m e  consuming and the idea  was dropped, 

However, 

The probe  that was used i n  the exper iment  was  the loop i tself .  It was  
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i so la ted  f r o m  a D. C. point of view from the r. f .  equipment by means  of inside 

and outside D. C.  blocks i n  the coaxial line. The r e s u l t  was that the only D. C.  

path f r o m  the loop to  the anode was  through the plasma, as was  des i red .  

much s m a l l e r  probe had been used e a r l i e r  but P e r s s o n  (1964) cautions tha t  a 

v e r y  small probe yields non-reproducable measu remen t s .  

2 
v e r y  n e a r l y  1 c m  , and the Langmuir probe c h a r a c t e r i s t i c s  w e r e  indeed r e p r o -  

A 

The loop area was  

ducable. 

the series of measurements .  Kostelnicek (1964) points out that  the be t t e r  the 

probe  and anode a r e  cleaned, t he  sha rpe r  the break  in the Langmuir  curve.  

This is important  i n  the accu ra t e  determination of the slope and the "break" 

c u r r e n t  of the curve,  (at ion sheath collapse). 

The loop was cleaned by ion bombardment  at frequent i n t e rva l s  during 

A v e r y  sensi t ive a m m e t e r  was  used to  m e a s u r e  the probe current .  The 

-6 
range  of the a m m e t e r  was f r o m  10 With the p r e s s u r e s  and 

d ischarge  cu r ren t s  used i n  the experiments ,  a probe  to  anode voltage range  

f r o m  -30 VDC to  4-30 VDC was adequate t o  cover  the range of i n t e re s t .  

ma to  10 ma. 

During the impedance measurements ,  the loop was  maintained at a potential 

such tha t  the ion sheath was  collapsed. 

7. 9 The Collision Frequency and the Plasma P a r a m e t e r  5 

Methods f o r  determining the p lasma p a r a m e t e r s  X and Y have a l r eady  been 

It r ema ins  to  es tabl ish a means of calculating the coll ision frequency. outlined. 

The to ta l  coll ision frequency is the sum of the electron-ion coll ision frequency 

and the electron-molecule  coll ision frequency (Balmain, 1963). According to  
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P e r s s o n  (1964), the electron-ion coll isions predominate  in  the brush  cathode 

plasma. 

Balmain (1 963) gives the following relat ions for  e lectron-ion and e lec t ron-  

molecule  collision frequency. 

and 

6 3/2 
3 . 3 ~ 1 0  T 

6 3 . 6 2 ~ 1 0  N. 
“ 1  1 

N. In [ 3/2 
9 e i  = 

T I L 
e 

4 -  
*em = T v p c p  

(7. 9. 1 )  

(7. 9. 2 )  

where  N. i s  the ion densi ty  (which is equal to the e lec t ron  density),  T i s  e lec-  
1 e 

t r o n  t empera tu re  i n  degrees  Kelvin, V is the t h e r m a l  average velocity of the 

electron,  P is the probabili ty of e lectron-molecule  coll ision (P = 19 for  He) 

and p i s  the p r e s s u r e  of He.in mmHg. 

C C 

Both electron-ion and electron molecule  coll ision frequencies w e r e  ca l cu -  

lated by means  of the previous formulae  and i n  m o s t  cases t /e i>>t /em,  except 

a t  high electron tempera tures  where  d e i  was quite smal l .  

7. 10 The r.f.  System and the Measurement  of Impedance 

The measu remen t  of impedance was accomplished by s t ra ight  forward 

slotted line techniques. A s  will be discussed in  the next section, a frequency 

range f r o m  500 M Hz t o  1050 M Hz was  selected for  the measu remen t s .  A 

grea t  dea l  of ca re  was taken in  the construction of the coaxial  feed to  the s m a l l  

loop beyond the slotted line. This was n e c e s s a r y  because  of the nature  of the 

impedance being measured .  Since the loop i s  v e r y  s m a l l  in  t e r m s  of the wave-  
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length, the loop impedance was almost  pure ly  react ive,  especial ly  in  the f r e e  

space  c a s e  where  no p l a sma  existed. 

A r e fe rence  point was established by immers ing  the whole loop i n  a bath of 

m e r  c u r  yo 

A 1200 M Hz low pass  f i l t e r  was used in  the frequency range f r o m  

1050 M Hz down to  750 M Hz, and a 800 M Hz f i l ter  was  used below 750 M Hz. 

The frequency was monitored by means  of a resonant  cavity and the wave- 

length was  measu red  by means  of the slotted line as a check each t ime  the f r e -  

quency was  changed. 

su remen t s  w e r e  taken at a s  low a power input as possible  without losing the 

s ignal  in noise. 

A c r y s t a l  detector was used in  the slotted l ine and mea- 

Because the r e fe rence  point of impedance was the shorted loop itself, the 

null shift  and the standing wave r a t io  could be plotted on a S m i t h c h a r t  giving 

the loop impedance directly.  

7.11 The Range of Plasma P a r a m e t e r s  Used 

The th ree  basic  p a r a m e t e r s  that  could be controlled i n  this experimental  

measu remen t  w e r e  r. f .  frequency, electron densi ty  and D. C. magnetic field. 

Very  l i t t le  control  was possible over  the coll ision frequency. 

At f i r s t  i t  was hoped that the electron densi ty  could be controlled with a 

fair amount of accu racy  by changing only the d ischarge  cur ren t .  This was t r u e  

to a ce r t a in  deg reep  but i t  must be remembered  that if the d ischarge  c u r r e n t  is 

increased ,  the e lec t ron  t empera tu re  would usually i n c r e a s e  too. Thus, t h e r e  

was not a l inear  re ia t ion between discharge cu r ren t  and eieLtroii deiisiiy. Giie 
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was usually able, however,  to  obtain an  e l ec t ron  dens i ty  within a fac tor  of 1 to  

5 of the value that  was des i red .  

Langmuir  probe t e s t  and adjusting the d i scha rge  c u r r e n t  until the  d e s i r e d  

"break" cur ren t  was obtained, all the t i m e  assuming that  the e l ec t ron  t e m p e r a -  

t u r e  would range between 200 C to 1200° C. 

t u r e  was the var iab le  that  contributed to  the difficulty of achieving the exact  

e lec t ron  density des i red .  

This was  accomplished by running a visual  

0 
The unknown e l ec t ron  t e m p e r a -  

A more  se r ious  problem a r o s e  when t h e r e  was a non-zero D, C.  magnet ic  

field present.  The l a r g e r  the magnitude of the D. C. magnet ic  field, the higher  

the electron t empera tu re .  

obtained in the absence  of the magnet ic  field, i t  would change when the magnet ic  

field was  added. So, although a des i r ed  value of B was eas i ly  s e t  by dialing 

the c o r r e c t  value of coi l  cu r ren t ,  i t  was difficult to  obtain the c o r r e c t  e lec t ron  

Thus,  even if a d e s i r e d  e l ec t ron  densi ty  had been 

0 

density.  

A value of B could have been se t ,  (fixing p l a sma  p a r a m e t e r  Y )  and then 
0 

the tube cu r ren t  changed, thus,  changing X. Howeverg this  would have mean t  

tha t  a new se t  of Langmuir  probe cha rac t e r i s t i c s  would have had to  be d e t e r -  

mined f o r  each and e v e r y  combination of X and Y, which would have been v e r y  

t ime  consuming. 

To alleviate the situation, the following method was  used t o  change the 

p l a sma  p a r a m e t e r s  X and Y. 

First, a d e s i r e d  value of Y was s e t  by set t ing a c u r r e n t  value i n  the m a g -  
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netic coi ls ,  and fixing the r. f. signal frequency at 1050 M Hz. Then, the d i s -  

charge  c u r r e n t  was s e t  t o  give a desired “break”  c u r r e n t  in the Langmuir 

charac te r i s t ic .  

mined, the exact  value of X, Y, and Z w e r e  known. 

Once the Langmuir charac te r i s t ics  had been accura te ly  de te r  - 

F r o m  that point on changes in  X, Y, and Z w e r e  accomplished by lowering 

the r. f .  s ignal f requency 50 M Hz at a t ime  and measur ing  the impedance at 

each of the frequencies  down to 500 M Hz. 

to  the  s q u a r e  of the frequency, a n  increase  in  X up to  a factor  of 4.41 was ac -  

complished by lowering the frequency in  s teps .  Likewise,  an inc rease  in Y up 

to a factor  of 2. 1 was possible. 

Since X is inverse ly  proportional 

One disadvantage of this  method, as ide  f r o m  having to  re - tune  the r.f. c i r -  

cuit  each  t ime  the frequency was changed, was that the value of Z a l so  changed. 

But s ince  control  over Z was difficult, i f  not impossible ,  this  method was con- 

s ide red  to  be as good as any, considering that only one Langmuir  cha rac t e r i s t i c  

had to  be de te rmined  for  a s e t  of twelve different combinations of X, Y, and Z .  

The number twelve, of course ,  i s  the number of 50 M H z  s teps  that exis t  

between and including 1050 M H z  and 500 M Hz. 

The numer ica l  range  of the plasma p a r a m e t e r s  achieved was  0 4 X g  15.65, 

0 L_Y 6 2. 0, Q 00474 ZgO. 18. These w e r e  not obtained simultaneously,  but 

r e p r e s e n t  the maximums and minimums achieved amongs t  all the measu red  

p a r a m e t e r s .  
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CHAPTER 8 THE NUMERICAL INTEGRATION O F  THE 

THEORETICAL EXPRESSIONS 

The derived expressions for the impedance of the loop a r e  in  irxtsgralc 'i  . 
form.  

tion for the f i r s t  o rde r  cor rec t ion  to  the quasi-s ta t ic  r e su l t  when B 

There  a r e  th ree  such expressions.  The first i s  the integral  r ep resen ta -  

- 
is  n o r m a l  

0 

to the loop, and i s  given by equation (4.1.16). 

resentat ion of the loop impedance in  a uniaxial medium when B 

the loop a s  given by equation (5. 3.6).  

The second in tegra l  is the rep-  
J 

e 
i s  n o r m a l  to  

0 

The third integral  is  the representa t ion  

of the impedance of the loop in  an uniaxial medium in  which the magnet ic  field, 

- 
i s  para l le l  t o  the plane of the loop. This is equation (6. 3. 16) which con- 

BOJ 

s i s t s  of a single and a double integral .  

It i s ,  of course,  des i rab le  to study the numer i ca l  r e su l t s  given by 

t eg ra l  representat ions.  Thus, p r o g r a m s  w e r e  wri t ten to evaluate the 

numer ica l ly  using a high-speed digital  computer  (University of Illinois 

7094). 

these in -  

n tegra ls  

IB M 

T h e r e  is a marked  resemblance,  a s  might be expected, i n  the t h r e e  integ- 

They all involve Besse l  Functions of the f i r s t  kind of o rde r  one, a s  wel l  ra l s .  

as exponential functions. 

well, which posed the problem of accu racy  and convergence i n  the number ica l  

evaluation. 

i n  the f o r m  of definite integrals .  

equation (4. 1. 16), the first o rde r  cor rec t ion  t e r m  to  the quasi-s ta t ic  impedance. 

They all involve in tegra ls  f r o m  z e r o  to  infinity a s  

For  this r eason  an  at tempt  was made  to  find equivalent expressions 

This a t tempt  was  successful  i n  the case  of 

- .  . 
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(4. 1 .16)  is  repea ted  here .  

Bateman (Vol. no. 1, p. 183, 1954) gives the  following formula.  

lT 
I e-PtJ12(t)dt  2 

21T ( 1 + C o s ~ ) [ ” J L + 2 ( 1 - C o s ~ )  -p] db (8. 1. 2)  i t 
I(P) = 

0 

Thus, 

After  sett ing 8 = b / 2  

and defining Cos 2 8 J-‘ R t 4  Sin 8 de  

(8. 1 .3)  becomes  

(8. 1 .4)  

(8. 1. 5)  

This i s  the definite in tegra l  express ion  that  was  used for  the numer ica l  

evaluation of Zin 
c o r r  

Equation (5.3.6) was  programmed as it s tands  and equation (6.3. 16) was  

p r o g r a m m e d  t o  evaluate only the  double integral ,  because  the s ingle  in t eg ra l  i s  

equal  to  one half of the  in t eg ra l  given by (5. 3.6), as will  be d i scussed  l a t e r .  

The p r o g r a m  technique used was  COMPLEX FORTRAN which gave the r e su l t s  

i n  complex f o r m  direct ly .  The numer ica l  method used was  Gauss  -Legendre  

quadra ture .  

It should be noted, as mentioned before,  that if R w e r e  s e t  equal  t o  zero ,  
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each integral  would diverge.  The fac t  that  R is a s m a l l  number  i s  cause fo r  

spec ia l  ca re  i n  the evaluation of the indefinite integrals .  

Thus, equation (5.3.6)  was evaluated by integrating numer ica l ly  over in- 

t e rva l s  of five, each in te rva l  being divided into at l ea s t  fifteen segments  with a 

specified desired accu racy  of 1 p a r t  i n  10 for  both the r e a l  and imag ina ry  p a r t  

of?thC.ixit&lgral. This routine was repeated, (0 to  5, 5 to  10, 1 0  to 15, etc. ) un- 

til the numer ica l  contributions of the l a s t  in te rva l  contributed l e s s  than 1 p a r t  

i n  10 

in tegra l  being 75. 0. 

4 

4 
t o  the total  integral .  This resul ted invariably in  the upper l imi t  of the 

The upper limit was independant of the p l a sma  p a r a m e -  

t e r s  used. 

The evaluation of (8. 1 .6)  to  give Zin 

f r o m  0 to 71/2 us ing  at l ea s t  fifteen divisions,  and requir ing an accu racy  of 1 

p a r t  i n  10 

was accomplished by integrating 
c o r r .  

4 
fo r  both the r e a l  and imag ina ry  p a r t  of the integral .  

The double in tegra l  of equation (6. 3.16) was  p rogrammed  to in tegra te  

f r o m  0 to  TT in 10  divisions and f r o m  0 to  30 in  96 divisions. 

when K 

that  the numer ica l  r e su l t s  of the double in tegra l  routine agreed with the r e su l t s  

of the numer ica l  integration of (5 .3 .6)  within l e s s  than 0. 1%. 

It was found that 

was s e t  equal to K , i n  which c a s e  (6.3.16) and (5. 3 .6)  a r e  identical ,  
1 0 

Thus, the upper 

l imit  of 30 on the indefinite integral  was deemed sat isfactory.  

The p rograms  w e r e  designed to accept  p l a s m a  p a r a m e t e r s  X, Y, and 2 a s  

well  as a, yo, and & as input da ta  and each p r o g r a m  yielded the impedance  re--  

sult,  normalized to 50 ohms. 
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I The complete  calculated resu l t s ,  presented l a t e r  i n  this study, consumed 

about five hours  of computer  time. 

took 10 sec / run  and the double integral  of (6.3.16) took 30 sec/run,  a run  be- 

ing one s e t  of input pa rame te r s ,  (a, fo ,6 ,  X, Y, z) .  

Equation (8. 1 . 6 )  took 0. 8 sec/run;  (5. 3 .6)  l 
I 
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CHAPTER 9 A DISCUSSION O F  THE DERIVED 

THEORETICAL FORMULAE 

9.1 The First Order  Correc t ion  T e r m ,  B' Normal  to  the Loop 
0 

Equation (4 , l .  16)  for  the f i r s t  o rde r  cor rec t ion  t e r m  to the quas i - s ta t ic  

impedance i s  repeated h e r e  for  convenience. 

where  
2 

P = K1/Ko (9. 1. 2 )  

The following observations a r e  per t inent :  

2 
(i) Zin is propert ional  to  C h  , a ve ry  sma l l  number.  

co r r ,  

(ii) If there  a r e  any lo s ses  (ZfO), K and K a r e  complex which r e su l t s  
1 0 

in  a contribution to the r e a l  p a r t  of Zin . (Values of Z=O. 01 
c o r r .  

w e r e  common in  the experimental  p lasma) .  These  slight l o s ses  

contribute only a ve ry  s m a l l  r e a l  par t .  

By examining (9. 1. 2)  one s e e s  that  it is possible for  P 

tive, for some values of X and Y, even i f  Z is s e t  nea r ly  equal to  

2 
(iii) to be nega- 

zero.  

would contribute to the r e a l  p a r t  of Zin 

This would cause  P to be a lmos t  pu re  imag ina ry  and thus, 

c o r r ,  

Assuming for  the moment  that  the lo s ses  i n  the medium a r e  zero,  the 

2 
region in  which p 

by X <  1, Y( 1, Y > 1-X and by X )  1, Y >  1 a n d i s  r e f e r r e d  to by Bal- 

i s  negative is shown i n  Figure 6b. This region is descr ibed  

2 
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Figure  6 (a) The (X, Y ) Plane, Behavior of K1 
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X 

X 

3 
Figure  6 (b) The (X, Y-) Plane,  Behavior of Kl /Ko  
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ma in  (1 963) as the hyperbolic region, because the sou rce - f r ee  wave equation 

is hyperbolic for those combinations of p l a sma  p a r a m e t e r s  X and Y. Thus, 

we expect a contribution t o  the r e a l  p a r t  of Zin 

where  p 

. in  th2 region (hyperbolic) 

is  negative over and above the contribution due to  sl ight l o s ses  i n  the 

c o r r .  
2 

medium (Z#O), 

(iv) A.ssuming slight l o s ses  which implies  

(9. 1 . 3 )  u= 1 

2 
p2=  1-Y -x 

2 
then 

(1 -Y ) ( l - X )  
(9. 1 .4)  

2 
It can be seen  f r o m  (9. 1 .4)  that a s  Y + 1 in  the hyperbolic region, 

L P --$ -W for  finite non-zero  X. This is the point a t  which we 

would expect the l a rges t  contribution to  the r e a l  p a r t  of the loop im- 

pedance. 

(v) As will be seen  in  the numer i ca l  resu l t s ,  the  l a r g e s t  contribution to  

the rea l  pa r t  of the total  impedance occurs  when Y 1, 

(vi) Note also i n  (9. 1 .4 )  that  when Y < 1 and X i s  ve ry  la rge ,  (not i n  the 

and thus, t he re  i s  a significant hyperbolic region), that  p + - 2 1 
2 

ICY 

contribution to the imag ina ry  p a r t  of Zin 

WhenK1 = K 

f r e e  space impedance predicted by the quasi-s ta t ic  theory.  

c o r r .  

= 1, Zin = 0, and the loop impedance i s  j u s t  the 
0 c o r r .  

- 
9, 2 The Loop Impedance in  a Uniaxial Medium; B Normal  to  the Loop 

0 

Equation (5.3.6) for the loop impedance is  repeated h e r e  for  convenience. 
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ob 

Z in dx uni ax (9. 2 .1)  

The following observations a r e  pertinent. 

1' (i) As CA- 0, Zin * Zin for finite K 
uni ax f r e e  space 

(ii) Unless slight l o s ses  a r e  assumed to exist ,  K i s  pure  r e a l  and 1 
2 2 

t he re  exis ts  some  value of x such that  x = K I C ~  (9. 2. 2)  

The assumpt ion  of sl ight losses  (ZfO) a s s u r e s  that  the integrand of 

(9. 2. 1 )  is always finite and produces  a contribution t o  the r e a l  p a r t  

of Zin 
uniax' 

( i i i )  In the regions where  K i s  l a r g e  and negative, the only contribution 1 

to the r e a l  p a r t  of Zin is due to the slight losses .  
uni ax 

(iv) When K is positive, (Figure 6a) ,  t he re  will be a contribution to the 1 

and this contribution will  i nc rease  a s  K in-  1 r e a l  p a r t  of Zin 
uni ax 

c reases .  

(v) The g rea t e r  the deviation of K f r o m  unity, the g rea t e r  the deviation 1 

of Zin 

For  X >  1 the genera l  behavior of the uniaxial impedance i s  the 

f r o m  the f r e e  space impedance. 
uni ax 

(vi) 

s a m e  a s  the behavior of the quas i - s ta t ic  impedance with the f i r s t  

o r d e r  cor rec t ion  t e r m .  

(vii)  The factor  K 

because,  a s  was pointed out ea r l i e r ,  the $-component of the E field 

i s  zero. 

does not appear in  this uniaxial impedance express ion  
0 

- 
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(viii) When K = 1, i. e ,  X = Y = 0, then Zin = Zin 
1 uni ax f r e e  space '  

A Note on the Compar ison  of the Quasi-Static Impedance and the 9.3 

Uniaxial Impedance Resul ts  

As noted before,the f i r s t  o rde r  cor rec t ion  t e r m  t o  the quasi-s ta t ic  im- 

pedance der ives  its charac te r i s t ic  f r o m  the behavior of p 

where  
2 

(9.3.1) 
2 1-Y -x 

P = K1/K 0 * 2 
(1 -Y ) (1  -X) 

when O < Z C < l . O  (9. 3. 2 )  

The uniaxial impedance formula  der ives  its cha rac t e r i s t i c s  f r o m  the behavior 

of K where  
1 7 

L. 
, l - Y  -x 

K1 (1 "Y2) 
(9. 3 .4 )  

It i s  s een  that these f ac to r s  a r e  very  similar for small X, but each factor  

contributes the opposite type of behavior for  X < 1. 

X < 1, and Y > 1-X the f i r s t  o r d e r  cor rec t ion  t e r m  has  a r e a l  p a r t  due to the 

F o r  example,  when 

2 

2 2 
negative value of p , But when X C  1 and Y > 1-X, the uniaxial impedance 

has  no r e a l  par t ,  except that  p a r t  due to  sl ight l o s ses  (Z#O). However, for  

X >  1 a contribution to the r e a l  p a r t  of both express ions  occurs  for Y > 1 and 

does not for Y C 1, 
- 

9.4 The Loop Impedance in  an Uniaxial Medium; B 0 P a r a l l e l  to the Loop 

Equation (6.3.16) i s  repeated h e r e  for  convenience. 
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00 
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2 

(9.4. 

The following observations a r e  pertinent. 

The f i r s t  in tegra l  of (9.4.1) i s  equal to 1/2 the impedance of the 

loop in  an  uniaxial medium where  the magnet ic  field is n o r m a l  to  

the loop, a s  can  be s e e n  f rom (5. 3.6). 

When Y=O, K = K  

t e g r a l  which is equal to  the f i r s t  integral  of (9.4. 1).  

cer ta in ly  expected, both uniaxial r e su l t s  a r e  equal when Y=O. 

When X=Y=O, K = K  =1 and a f r e e  space  impedance formula  r e su l t so  

a s  expected. This resu l t  has  a v e r y  s m a l l  r e a l  p a r t  due to  C but 

is essent ia l ly  the f r e e  space resul t .  

In the double in tegra l  there  i s  a contribution to  the r e a l  p a r t  of the 

impedance when K 

small .  

The factor K /K appears  under the root  s ign which contributes to 

the r e a l  p a r t  of the impedance when the p l a s m a  p a r a m e t e r s  fa l l  in 

the hyperbolic region a s  outlined before. 

and the double integral  s implif ies  to  a single in-  
1 0  

Thus, a s  is 

0 1  
2 
k 

2 
i s  positive but this is small because G i s  

0 4 

0 1  
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(vi) Setting ZfO (slight l o s s e s )  contributes to the r e a l  p a r t  of the imped-  

anc e. 

(vii) In general ,  the impedance of a loop in  a uniaxial medium in  which 

- 
is para l le l  to the loop, i s  a much m o r e  com-  

0, 
the magnetic field, 

plicated function of the p l a sma  p a r a m e t e r s  than for  the c a s e  where  

- 
B i s  no rma l  to the loop. We would, therefore ,  intuitively expect 
0 

the plasma to affect the loop impedance in a m o r e  complicated fash-  

ion in  this orientation a s  compared  to the f i r s t  orientation. 
K 
0 

(viii) The la rger  the deviation of K and K1 and - f r o m  unity, the l a r g e r  
K1 0 

the loop impedance should deviate f r o m  the f r e e  space  impedance. 
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CHAPTER 10 THE NUMERICAL RESULTS O F  THE 

EVALUATION O F  THE 

THEORETICAL FORMULAE 

10. 1 Introduction 

In the exper imenta l  measu remen t  p rogram,  the r. f. f requency was changed 

i n  o r d e r  t o  effect  a change of p l a sma  pa rame te r s .  

r e a s o n s  as was explained ea r l i e r .  

This was done for  p rac t i ca l  

Thus, the p a r a m e t e r s  X, Y, and Z changed simultaneously.  

It is des i r ab le  to  s tudy the theoret ical  behavior of the loop impedance un- 

d e r  m o r e  controlled conditions, where only one p l a sma  p a r a m e t e r  (e lec t ron  

o r  coll ision frequency)  i s  var ied  while the o thers  density,  magnet ic  field, 

a r e  kept  constant,  as wel l  as the  r.f. frequency, a. For  this  r e a s o n  a com-  

plete  s e t  of computer  calculations was pe r fo rmed  i n  which the r. f. f requency 

was s e t  at 1 G Hz and the loop impedance a s  a function of X was  calculated for  

a fixed Y and Z. 

- 
BO’ 

A value of Z=QOl was chosen throughout because  it was of the s a m e  o r d e r  

as the values  of Z attained throughout the m e a s u r e m e n t  p rogram.  

Eleven  d i f fe ren t  values of X and eleven different  values of Y w e r e  used in  

the computation. They a r e  

X = ( O ,  0 . 5 ,  0 .75 ,  0 . 9 ,  1.0,  1 .1 ,  2 . 0 ,  5 . 0 ,  10.0, 40.0,  100.0) (10 .1 .1)  

and 

Y = (0 ,  0 .  7 0 7 ,  0.  9,  0 .  9 5 ,  0 .  999, 1. 0 ,  1.01, 2 .0 ,  5 . 0 ,  10.0,  2 0 . 0 )  (10.1.2)  
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The r e su l t s  of these calculations a r e  shown on the Smith Char t s  of this 

chapter.  

10. 2 Resul ts  When % Is Normal  to the Loop 
0 

Figures  7 to 17 inclusive show the numer i ca l  r e su l t s  of the computation of 

the loop impedance. The quasi-s ta t ic  r e su l t  ( f ree  space)  plus the f i r s t  o r d e r  

cor rec t ion  t e r m  is plotted as  well a s  the r e su l t  calculated f o r  the uniaxial medi -  

um for the sake of comparison.  They a r e  labelled Q.S. and U. respectively.  

The impedance marked F. S. occurs  when X=O. 

Note that for Y ,1. 95 t h e r e  is  a negligable r e a l  p a r t  t o  either impedance. 

Fur ther  m o r e ,  in  both cases ,  the theoret ical  loop impedance i s  essent ia l ly  

that of f r ee  space unless X is ve ry  large.  As X increases ,  the impedance 

locus sweeps along the edge of the Smith Char t  and this  sweep is invariably 

g rea t e r  in  the case of X=100 in  the "quas i - s ta t ic  plus f i r s t  o rde r  cor rec t ion  

te rm" impedance than for the uniaxial impedance. 

For  0 .999  5 Y & 1.01 a r e a l  p a r t  to the loop impedance appears  i n  both 

cases .  This rea l  p a r t  appea r s  a t  Y e  1 because Z#O. This  r e a l  p a r t  i s  l a r g -  

e s t  in the uniaxial impedance and only modera t e  values of X (say X=5)  a r e  r e -  

quired to yield a significant r e a l  pa r t ,  On the other hand, X mus t  be g rea t e r  

than a t  l ea s t  40 before any significant r e a l  p a r t  is seen  in  the "quasi-s ta t ic  

plus f i r s t  o rde r  correct ion te rm" case ,  Also  i n  the la t te r  case ,  of X 4  10, 

the impedance i s  essent ia l ly  that of f r e e  space.  

For  2. 0 & Y $ 20 the uniaxial formula pred ic t s  essent ia l ly  f r e e  space  un- 
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l e s s  X i s  very  large. 

unless X i s  ve ry  large,  and the t e r m  K C 

This i s  because  the factor  K is essent ia l ly  eqrlal to one, 1 
2 

is  small and contributes l i t t le  
1 4  

change f r o m  f r ee  space.  

rect ion t e rm"  i s  different, however,  because  for l a r g e  Y, p + - - thus  con- 

The c a s e  of the "quas i - s ta t ic  plus f i rs t  o rde r  c o r -  

2 1 
X 

tributing a r e a l  par t  to the loop impedance which v a r i e s  a s  X var ies .  F o r  both 

formulae  X mus t  be l a r g e r  than 10 to cause any significant change f r o m  the --- ---- -- 

f r e e  sDace value of l o o ~  imDedance. 

10. 3 Resul ts  When 5 Is Pa ra l l e l  to  the Loop 
0 

Figures  18 to 28 inclusive show the numer i ca l  r e su l t s  for  this  case .  As 

was anticipated in Chapter  9, the loop impedance in  this  c a s e  exhibits a m o r e  

complex p l a sma  p a r a m e t e r  dependance. The impedance is essent ia l ly  reac t ive  

unless the plasma p a r a m e t e r s  fa l l  inside the aforementioned hyperbolic region 

of the (X, Y ) plane. However, re la t ively small values of X a r e  requi red  to  
2 

cause a significant change f r o m  the f r e e  space  value of impedance. 

F o r  YC6. 95 the impedance locus consis ts  of a loop which r e tu rns  to  the 

pure reac t ive  edge of the Smith Char t  when X 1/1, except when Y=O,95 and 

X=lOO, i n  which c a s e  the re  is a s m a l l  r e a l  p a r t  to  the impedance,  due to the 

2 2 
f a c t o r s  K I C k  and K Ch . 

0 

F o r  0. 999 & Y 4 1. 01 this loop becomes closed v e r y  tightly f o r  X 4 1 and 

then, for  X 7  1, the  r e a l  p a r t  of the impedance i n c r e a s e s  with X to  an  r e l a -  

t ively constant value when X 7/ 10. 

F o r  Y + 2 .0  the impedance locus becomes  m o r e  complicated and. exhibits 
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the l a r g e s t  r e a l  p a r t  at X = 5 ,  

unusual i n  th i s  region of the (X, 

function of K 

1 0 . 4  S u m m a r y  

The behavior of the impedance ~ O C L S  i n  indeed 

2 
Y plane.  This  is becaase  the impedance is  a 

0 
K 

K1, and - combined. 
K1 

0 

Keeping i n  mind the range  of p lasma,  p a r a m e t e r s  a t ta inable  in  the m e a -  

s u r e m e n t  p rogram ( O L  - X <  15, 0 , 1Y  < 2 -  0)  and r emember ing  that  these  ranges  

w e r e  not attainable simultaneously,  one can  ant ic ipate  the following r e s u l t s  o f  

the  m e a s  urement  p r o g r a m ,  

I 

F i r s t ,  fo r  B no rma l  to the loop, the m e a s u r e d  impedance should be 
0 

essent ia l ly  the f r ee  space  impedance,  except when Y *le 

- 
I n  the c a s e  of B pa ra l l e l  to  the loop, one would expect t o  encounter unus- 

0 

ual  impedance loci when the p l a sma  p a r a m e t e r s  fall i n  the  hyperbolic region 

and much smoother  behavior and s m a l l e r  r e a l  p a r t  to the impedance when out- 

s ide  the hyperbolic region. 
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CHAPTER 11 THE RESULTS O F  THE 

EXPERIMENTAL MEASUREMENT 

O F  THE LOOP IMPEDANCE 

11. 1 Normal  to  the Loop 
0 

Figures  29  to  36 inclusive show the  m e a s u r e d  impedance of the loop in  
- 

the  p l a sma  when B was n o r m a l  t o  the loop and under var ious combinations of 
0 

w, X, Y, and Z .  It should be r emembered  that the r. f .  f requency was changed 

f r o m  1050 M Hz  t o  500 M H in  50  M Hz s t eps  i n  o r d e r  t o  v a r y  X and Y. The 

theore t ica l  impedance, a s  calculated by the computer  for  the s a m e  values of 

w, Po, 6, X, Y, and Z, is shown for purposes  of comparison.  The m e a s u r e d  

cu rve  is labelled MEAS. 

As  was anticipated in  the discussion of the theore t ica l  formulae  and the i r  

numer i ca l  r e s u l t s  i n  Chapters  9 and 10 the measu red  impedance was essent ia l -  

l y  that  of f r e e  space,  except when Y' 1, 

the slotted l ine fe l l  within 10% of the predicted theore t ica l  nul l -shif ts .  

m e a s u r e d  r e a l  p a r t  of the impedance was usually higher  than predicted by the 

theory,  which might  be expected due to the re la t ive ly  high standing wave ratio.  

I t  i s  a s sumed  that  s o m e  r. f .  heating of the p l a sma  occurred .  

was  used to  keep the inpat r. f .  s i gna l  t o  a minimum without losing the nul ls  i n  

noise.  

All of the nul l -shif ts  m e a s u r e d  on 

The 

E v e r y  effor t  

F igure  31 exhlbits increas ing  real  pa r t  below 900 M Hz, in which c a s e  X 

is inc reas ing  to  the l a r g e s t  value achieved in the m e a s u r e m e n t  p rogram.  I t  is 
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exhibiting the kind of behavior one would expect i f  X w e r e  l a rge  and Y w e r e  

g r e a t e r  than 1. A t  500 M Hz, Y=O. 95. 

t ion in  which the measu remen t s  show any significant deviation f r o m  the theory.  

In F igure  33 and Figure  35 the theo ry  predic t s  an  i n c r e a s e  i n  the  r ea l  

This  is the  only c a s e  f o r  this  orienTa- 

p a r t  of the impedance as Y p a s s e s  through Y = l .  

has  been detected in  F igure  33 which was m a r k e d  by a d rop  19 V S W R  f r o m  

over  12 to about 8 at Y"1.  

It appea r s  that  this  i n c r e a s e  

This i s  not the c a s e  in  F igure  3 5  where  the pred ic ted  r e a l  p a r t  1s negl i -  

gibly s m a l l  and t h e r e  was no noticeable d rop  i n  VSWR ar Y * l a  

The remaining Figures  show an  excellent ag reemen t  with the theory,  

which predic t s  f r e e  space  impedance and negligible dependance on the p l a sma  

p a r a m e t e r s .  

s u r e d  impedance a g r e e s  wel l  with the theo ry  for  this  or ientat ion,  

11 2 Pa ra l l e l  to the Loop 

It is felt tha t  the quali tative and quantitative behawor  of the m e a  

0 
- 

Figures  3 7  to  41 mclus ive  show the m e a s u r e d  loop impedance when B 
0 

was pa ra l l e l  to  the loop and under var ious combinations of X, Y, and Z .  A 

br i e f  glance a t  the Smith Char t s  shows tha t  the  quantitative behavior of the 

m e a s u r e d  impedance for  this  OrientatLon does not a g r e e  as  well with the theo ry  

a s  it did for  the f i r s t  orientation. However, note that when the theo ry  p red ic t -  

ed a smooth impedance locus,  a s  i n  F igure  37, and Figure  41, the m e a s u r e d  

impedance loci w e r e  indeed smooth and the g e n e r a l  shape of the theore t rca l  

loci  was reproduced in the m e a s u r e m e n t s .  On the other  hand, when unusual 
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impedance loci w e r e  predicted by the theory  a s  i n  Figures  38,  3 9 ,  and 40, i. e. 

when X and Y fel l  i n  the hyperbolic region, the m e a s u r e d  loci exhibited unus-. 

ual behavior as well. 

ag rees  well  in s o m e  cases ,  and not s o  well  in  o thers .  

The qualitative behavior of the m e a s u r e d  impedance 

It i s  c lear ,  however, that  the m e a s u r e d  loop impedance for this  or ien ta-  

t ion was indeed p lasma dependant. 
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CHAPTER 12 CONCLUSLONS 

12. 1 Norma?. to  the Loop 
0 

The loop impedance w a s  derLved In two different  ways.  The f i r s t  was 

using the quasi-s+at ic  approximatioq, which yielded the f r e e  space  resu l t .  

f i r s t  o r d e r  correc+.ion t e r m  was a functior of both K and K a The second 
1 0 

method was  T O  consider the medium to be uniaxial, which resulxed in a s imple r  

der iva t ion  and the impedance t i r n e d  02, to be a function of K 

A 

but not K 1' 0 

I t  would be helpful t o  krow which approximation cor responded bes t  with 

Because both methods predicted essent ia l ly  the m e a s u r e d  loop impedance. 

the f r e e  space  Lmpedance for  the range of p l a sma  p a r a m e t e r s  attained in  the 

m e a s u r e m e n t  p rogram,  no conclusive s ta tement  as to  which approximation is  

be t te r  c a n  be made.  

However. the following concicslons can  be drawn. 

r i j  Both approximations predicted essenta i l ly  the f r e e  space  r e s u l t  for  

the p l a sma  p a r a m e t e r s  used arid the m e a s u r e d  r e s u l t s  ver i fy  this  

fac t  in al: but one c a s e  1Flgore 31 ) ;  (the behavior of the impedance 

followed the behaviar pPed,c:zd for  X>> 1, Y >  1 although Y was a 

l i t t le l e s s  than 11. 

(ill No distinctiDn be+wee.c :he "qcas i - s t a t i c  plus f i r s t  o r d e r  correcltlon 

t e rm"  method arLd the uniax,al method could be m a d e  f r o m  the mea 

s u r e d  r e su l t s .  



106 

12.  2 Pa ra l l e l  to  the Loop 
0 

For  this  orientation, the loop impedance was calculated under the uniaxial  

approximation. 

The following conclusions can  be drawn. 

(i) 

( i i )  

(iii) 

(iV! 

(v) 

(vi) 

The impedance of the loop i n  this or ientat ion i s  a much m o r e  com-  

plex function of p l a sma  p a r a m e t e r s  X and Y than for  B 

the loop, 

Moderate values of X and Y a r e  requi red  to  produce a loop imped-  

ance which is significantly different  than the f r e e  space  value. 

The m e a s u r e d  loop impedance locus was smooth i n  c a s e s  where  the 

theory  predicted a smooth locus.  

The m e a s u r e d  impedance locus was not smooth in c a s e s  where  the 

theory  predicted a locus that  was not smooth,  

The quali tative behavior of the m e a s u r e d  smooth impedance loci 

corresponded wel l  to  that  of the theore t ica l  smooth impedance loci, 

and the quantitative behavior agreed  f a i r l y  wel l  (within 15% a s  far 

a s  null shifts  w e r e  concerned) .  

Qualitative ag reemen t  of the theory  and the m e a s u r e d  values was 

not good in  the c a s e  of the unsmooth impedance loci, although qual- 

i ta t ive agreement  was be t te r ,  and somet imes  was excellent f r o m  a 

local standpoint, (F igu re  3 8). 

- 
n o r m a l  to  

0 
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12 .3  Genera l  Conclusions 

By comparing the resu l t s  of this study to those of Balmain (1963), one 

can  conclude that a " shor t  magnet ic  dipole" i s  affected by an  anisotropic 

p l a s m a  to  -__. far l e s s  a degree  than the sho r t  e lec t r ic  dipole. 

The loop impedance measurement  p r o g r a m  cor robora ted  the g ross  be,- 

- 
havior predicted by the theory. In  severa l  instances  (part.icularly fo r  B 

0 

n o r m a l  to the loop) the measu red  resul ts  agreed  ve ry  well. 

The impedance fo rmulae  a r e  presented in  a relat ively s imple f o r m  and 

the genera l  behavior of the impedance as a function of w, Po, c, X, Y, and Z 

i s  displayed in  these  formulae  in  a ra ther  s imple fashion. 
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